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LETTER TO THE EDITOR

Intrinsic localized modes in the charge-transfer solid PtCl
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Received 30 July 1999

Abstract. We report a theoretical analysis of intrinsic localized modes in a quasi-one-dimensional
charge-transfer solid, [Pt(en)2][Pt(en)2Cl2](ClO4)4(PtCl). We discuss strongly non-linear features
of resonant Raman overtone scattering measurements on PtCl, arising from quantum intrinsic
localized (multiphonon) modes (ILMs) and ILM-plus-phonon states. We show that Raman scatt-
ering data display clear signs of a non-thermalization of the lattice degrees of freedom, manifested
in a non-equilibrium density of intrinsic localized modes. Adiabatic lattice dynamics is used in a
model two-band Peierls–Hubbard Hamiltonian, including a screened Coulomb interaction between
neighbouring sites. The Hamiltonian is diagonalized on a finite chain. The calculated adiabatic
potential for Peierls distortion of the Cl sublattice displays characteristic non-analytic points, related
to a lattice-distortion-induced charge transfer. Possible non-adiabatic effects on ILMs are discussed.

In this letter we discuss intrinsic localized modes, i.e. multi-quanta bound states [1], in a
halogen-bridged mixed-valence transition metal complex [Pt(en)2][Pt(en)2Cl2](ClO4)4 (en=
ethylenediamine), subsequently denoted as PtCl (see [2] and references therein). PtCl is a
representative of a family of MX-chain compounds, where M stands for a transition metal
(e.g., Pt, Pd, or Ni) in a mixed-valence (i.e. charge-disproportionated) state and X is a halogen
(Cl, Br, or I). PtCl consists of a three-dimensional crystalline array of charged linear chains
of alternating metal(Pt3+) and halogen(Cl−) ions, with(en)2 ligands attached to the metals.
There are also two ClO−4 ions per unit cell to maintain charge neutrality. The structure of PtCl
is given in figure 1 of [3]. Each Cl ion has two electrons in the filled pz orbital (z is oriented
along the chain axis). Pt ions have on average one electron in each dz2 orbital. There are,
therefore, three valence electrons or one hole per unit cell. The ground state of PtCl displays
a very strong charge-density-wave (CDW) structure. Holes are redistributed to produce an
alternating sequence of nominally Pt2+ and Pt4+ ions that have nearly zero and two holes,
respectively. Cl ions then move strongly closer to Pt4+ atoms. As a result of this periodic
lattice distortion, matrix elements for hopping from Pt4+ ions increase and holes gain energy
by virtual hops from Pt4+ to Cl. This strong Peierls-distorted-disproportionation phase is well
described as Cl–Pt4+–Cl trimers, alternating with weakly coupled empty Pt2+ sites: the Pt4+–Cl
distance is 2.318 Å, and the Pt2+–Cl distance is 3.085 Å. The electron–electron repulsionU

at Pt sites is not sufficient to destroy the CDW phase or to significantly reduce its magnitude.
Therefore, it is not necessary to explicitly include correlations as far as the magnitude of the
CDW is concerned. Indeed, as shown in [2], one may introduce effective free-electron-model
parameters that give correct values for the ground-state uniform Peierls distortion. However,
calculations in [2], and our calculations below, show that it is necessary to introduceU if
one wishes to describeelectronicproperties. The optical absorption of PtCl has two peaks, at
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approximately 2.5 eV and 5.5 eV, corresponding essentially to Pt4+ → Pt2+ and Pt4+ → Cl
local charge-transfer excitons [2]. The width of the Pt4+ → Pt2+ band is of the order of
0.7 eV [4]. This corresponds to a tunnelling time of about 5.9× 10−15 seconds for a hole
to tunnel from one Pt2+ site to a near-neighbour one. Due to the large Peierls distortion, the
inter-valence charge-transfer (IVCT) gap is large,≈2.5 eV= 2.9× 104 K. The energyEph
of the optical phonon with wave vectork = 0 in the system is 38 meV= 437 K. The period
of a phonon oscillation is thus equal to 1.4× 10−13 s.

Resonant Raman scattering (RRS) measurements on PtCl were reported in [1], and the
observed strong red-shift of overtones interpreted convincingly in terms of multiphonon bound
states, i.e., intrinsic local modes (ILMs). Below, we adopt a simple Brownian motion picture
of a RRS event; see figure 1. We first consider the simplest and most probable scenario
in the local (atomic) limit appropriate for PtCl. In the first stage, figure 1(a), a photon is
absorbed, and a hole is transferred from a Pt4+ ion to the neighbouring Pt2+ ion, creating
a pair of neighbouring Pt3+ ions. Then, in the simplest situation, after some time the hole
recombines, emitting a photon. In more complicated and less probable scenarios a number of
further hops (tunnelling steps) may occur before the recombination. Let us first consider the
simplest scenario above. After a hole is transferred to the empty Pt site, the Cl ion between
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Figure 1. A simple picture of a resonant Raman scattering event in the localized (atomic) limit.
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two Pt3+ sites is no longer at the minimum of its adiabatic energy. Therefore, it starts to
move, transferring the electronic energy to the energy of the lattice; see figure 1(b). After
some time the hole hops back and a photon is emitted; see figure 1(c). Some energy remains
in the lattice vibration; see figure 1(d). This energy corresponds to a quantized intrinsic
localized mode (ILM). The quantum ILM energy levels are then observed as peaks in the
RRS spectrum [1]. Measurements in [1] also found small-magnitude ILM-plus-fundamental
side-peaks. These correspond to more complicated situations, in which the dynamics of at
least two neighbouring trimers are involved. One of the trimers is excited into anN -phonon
state, and the other one is in a one-phonon state. The amplitude of the corresponding peaks is
much less than the amplitude of pure ILM peaks [1]. This fact is readily explained in the local
picture of a RRS event described above. The dynamics of two trimers may become excited by
multiple-hop events. These multiple-hop events have much less probability than the event in
figure 1, due to the very high degree of localization in PtCl because of its very strong charge
disproportionation [1,2]. An important issue is that of why, if two-trimer excitations do occur,
they appear as(N − 1, 1) modes, such that there areN − 1 phonons on one trimer, and one
phonon on the other. Other possible modes, for instance(N − 2, 2)modes, are apparently not
observed in the RRS spectrum within the experimental resolution [1]. The answer to this puzzle
seems to lie in the bosonic nature of phonons. Bosons tend to bind together, or ‘condense’,
into composite states. The expression for the probability amplitude for a boson branching to
some quantum state has a multiplication factor

√
M + 1, whereM is the number of bosons

already in this state. Therefore, ifN phonons are emitted by an exciton and are allowed to
branch into two states (in our case two neighbouring trimers), the most probable outcome
is for all of them to go to the same trimer, and then the next most probable configuration is
the (N − 1, 1) configuration. We reiterate that the validity of the whole picture described
above is based upon the strongly localized nature [1] of PtCl, i.e., upon the fact that being
at a particular trimer is close to being in a well defined quantum state. As noted above, the
energy of thek = 0 optical phonon in PtCl is 437 K. Measurements [1] were performed on
samples cooled to 12 K. Even allowing for some local heating of the sample by the laser light,
it is impossible for the temperature of the sample during the measurements to become close
to the thermal excitation threshold of optical phonons. Therefore, there cannot be thermalized
optical phonons in the system. In spite of this, measurements [1] revealed clearly pronounced
‘ILM-plus-fundamental’ features. These features are anti-Stokes-like lines, corresponding to
a transformation of a pre-existing optical phonon into an ILM by the absorption of a photon.
This means that the system clearly has pre-existing optical phonons and is, therefore, not in
thermal equilibrium. In order for such a non-equilibrium phenomenon to be possible, optical
phonons must have a long lifetime; that is, the conditionτphononG ∼ 1 should be satisfied,
whereG is the number of photons absorbed in the sample per second per unit PtCl cell. A
detailed study of this interesting phenomenon requires further experiments, particularly of
the anti-Stokes component of the RRS spectrum. It is worthwhile noting that non-thermal
phonon distributions in other strongly coupled electron–phonon materials (e.g. conjugated
polymers and proteins [5–7]) have been invoked recently. Also the long, multi-timescale
relaxation ofclassicalILMs has been observed in numerical simulations [8] on non-linear
lattices.

The usual adiabatic parameter, which is the ratio of the characteristic phonon and electron
frequencies, is small for PtCl. Therefore, the amplitude of the Peierls distortion should be well
described in the adiabatic approximation. On the other hand, as was shown in [9], the purely
adiabatic theory fails to describe the dynamic optical absorption attributed to breathers. This is
related to the fact that, although the adiabatic approximation may describe well the amplitude
of the wave function, it fails to correctly incorporate phase effects. The phase of the wave
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function does not play a role if one is calculating the amplitude of the Peierls distortion, since
this calculation seeks the minimum of the adiabatic energy and is phase insensitive. However,
phase effects play a direct role in, e.g., the optical absorption, where effects of constructive
and destructive interference are present. One goal of our work here was to check the limits of
validity of the adiabatic approximation for the calculation of energies of quantum ILMs. Our
conclusion is that, although the adiabatic approximation can work well for a calculation of the
linear part of the energies, it may fail if one is calculating the non-linear corrections, which
correspond to the binding energies of phonons in bound states. Since these binding energies
are typically small, they may be strongly influenced by non-adiabatic effects.

A minimal phenomenological model for describing qualitative features of PtCl is the
two-band Peierls–Hubbard model, introduced for this purpose in [2]. The ingredients of this
model are the bond-length-dependent on-site energy difference between Pt and Cl orbitals, the
bond-length-dependent hopping matrix element connecting Pt and Cl ions, and the Hubbard
repulsionU for electrons on a Pt atom. Lattice degrees of freedom are described by the linear
nearest-neighbour elastic spring constantK. Further studies [3] have shown that, since the
Coulomb interaction at the length scale of one lattice constant is not fully screened, there
is a need to take this interaction into account, assuming some reduced effective charges on
neighbouring sites. The Hamiltonian of our model is

H =
∞∑

l=−∞,σ
−t0(1− α1l)(c

+
l,σ cl+1,σ + h.c.) +U

∞∑
l=−∞

n2l,↑n2l,↓

+
∞∑

l=−∞

[
K12

l

2
+
P 2
l

2ml

]
+
∞∑

l=−∞
Vc
(nl − Zl)(nl+1− Zl+1)

Rl,l+1

−
∞∑

l=−∞
[−ε + β(12l+1 +12l)] n2l . (1)

Here c+
i , ci are electron creation and annihilation operators,t0 is the Pt↔ Cl transition

amplitude,α andβ are the electron–phonon coupling strengths,1l is the bond-length change
for thelth bond,U is the electron repulsion at Pt sites,ε is the energy difference between Cl and
Pt sites,K is the linear elastic constant,ml is the mass of thelth atom,Vc is a phenomenological
parameter related to the charge screening, andZl is the positive ion charge at the sitel [3].
We assume Pt sites to take even indices. The filling is three electrons (or one hole) per unit
cell. Calculations were performed on 12-site chains, using numerical exact diagonalization
and the method of increments described in [10]. The lattice was treated adiabatically. The
coupling constants were chosen to fit the experimental results for the magnitude of the Peierls
distortion, the positions and magnitudes of the Pt4+→ Pt2+ and Pt4+→ Cl optical absorption
peaks, and the optical phonon frequency. Then the non-linear adiabatic potential for Cl was
calculated by fixing the Peierls-distorted positions of all sites except that of one Cl atom,
and calculating the energy of the full system as a function of the position of this chosen
Cl atom; see figure 2(a). The displacementX is measured with respect to the undistorted
phase. PositiveX means a displacement in the direction of the Pt2+ site. The minimum of the
potential is atX = −0.37 Å, which is the value for the Peierls distortion. AtX = 0.17 Å the
calculated potential has a non-analytic point. At this point the first derivative of the potential
with respect toX has a jump. Physically this non-analytic point corresponds to a transfer
of a hole from the Pt4+ site to the closest Pt2+ site. The mechanism of this transfer is as
follows. AsX increases, the electron–phonon coupling leads to an energy increase at the
Pt4+ site. Two holes at the Pt4+ site experience the Hubbard repulsion. AtX = 0.17 Å
the Hubbard repulsion dominates and one hole is transferred to the closest Pt2+ site. In this
situation, the potential suddenly softens. This effect is related to the potential formation of
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(a)

(b)

Figure 2. (a) The adiabatic potential for a single Cl atom. The zero of energy corresponds to the
equilibrium position in the Peierls-distorted phase.X is the shift of the Cl atom, measured from
the undistorted phase. (b) The adiabatic potential for two symmetrically displaced Cl atoms in one
trimer.

local kink–antikink pairs in the system, which is illustrated in figure 2(b). In this figure we plot
the adiabatic energy fortwoCl atoms displaced symmetrically. We observe a local minimum
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in the adiabatic energy, which should be attributed to the creation of a kink–antikink pair.
Having the adiabatic potential, figure 2(a), non-linear corrections to quantum levels of a37Cl
site oscillating in this potential may be accurately calculated using perturbation theory for a
quantum anharmonic oscillator [11]. First we performed our calculations without the Coulomb
term and found the non-linear softening of the potential to be seriously underestimated. We
were not able to reproduce the experimental values for the non-linear corrections with any
reasonable choice of model parameters. One can view this fact as a confirmation of the
importance of intra-chain Coulomb interactions in PtCl [3]. We then added the Coulomb term
and were able to fit the measured values of the non-linear corrections using the following set
of model parameters:t0 = 0.75 eV,U = 2.44 eV,β = 1.77 eV Å−1, α = 3.55 eV Å−1,
ε = 0.90 eV,K = 9.7 eV Å−2, Vc = 8.18 eV Å. Our value of the HubbardU is close to
U = 2.0 eV, obtained in [4] by quantum chemical configuration interaction calculations on a
Cl–Pt–Cl cluster. This correspondence is reasonable, since the HubbardU is characteristic of
a highly localized d orbital, and should not change much when going from an atomic cluster to
a crystal. The value of the Coulomb repulsion coefficientVc has the same order of magnitude
as the value 13.3 eV Å found in [3] using a Hartree–Fock approach. The adiabatic potential
in figure 2(a) is quadratic near the equilibrium point and may be written as

Ead = F1 dx2/2 +F2 dx3/3 +F3 dx4/4.

The quantum levels for the Cl atom moving in this potential well are then given by the
approximate expression [11]

En = h̄ω
[
(n + 1/2) +

(
ε1

h̄ω

)2

A(2)n +
ε1

h̄ω
B(1)n −

(
ε1

h̄ω

)2

B(2)n

]
. (2)

Here

A(2)n =
15

4

(
n2 + n +

11

30

)
B(1)n =

3

4
(2n2 + 2n + 1) B(2)n =

1

8
(34n3 + 51n2 + 59n + 21)

ω =
√
F1/2m l =

√
h̄/mω

ε1 = l3F2/3 ε2 = l4F3/4.

In figure 3 we have plotted the results for energy levels shifts, together with experimental RRS
results for Pt37Cl [1]. HereN is the number of phonons in the bound state. For smallN we find
good agreement with the experiment. AtN = 5 the amplitude of the shift becomes larger than
our estimates. This suggests an additional softening non-linearity in the system at sufficiently
large amplitudes. It may be that this non-linearity is related to non-adiabatic effects, which
become more important as the amplitude of the ILM increases.

To conclude, intrinsic localized modes (ILMs) in PtCl give an example of non-linear,
thermally non-equilibrium excitations in crystal lattices. Similar phenomena, probably related
to energy localization and non-thermalization, have been experimentally observed, especially
via ultrafast spectroscopy, in several electron–phonon-coupled systems. These systems include
polymers [5], glasses [6], and biological systems such as proteins [7]. The unique advantage
of PtCl and related MX materials is that one can obtain very good crystals with a known
structure and controllable and tunable non-linearity strengths. Therefore, PtCl provides an
ideal opportunity for making quantitative models and testing theories of intrinsic non-linear
energy localization (as well as extrinsic energy localization [12]). In this letter, a two-band
Peierls–Hubbard model with screened Coulomb interaction, in the adiabatic approximation,
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Figure 3. The absolute value of the non-linear energy level shift. Dots correspond to the theoretical
prediction. Circles are the experimental results for Pt37Cl [1]; the size of a circle gives the
experimental uncertainty due to the finite RRS peak width. Lines are guides to the eye.

has been applied to PtCl. We have found that this gives a good qualitative account of the
main phenomena related to the existence of intrinsic localized modes in PtCl, at least for
small numbers of bound quanta. We have also shown that the screened Coulomb interaction
is a necessary ingredient within the adiabatic model for explaining the quantitative magnitude
of non-linear shifts in the resonant Raman spectrum. We have observed that there exists an
additional source of softening in the system at sufficiently large amplitudes. We suspect that this
is related to non-adiabatic effects; future investigations will be focused on a quantitative theory
of these effects. Other important directions for future experimental and theoretical research
include measuring lifetimes of quantum ILMs, understanding the intrinsic mechanisms for their
decay and their interactions with impurities, as well as studying photoexcited ILMs [13]. PtCl
offers the first controlled experimental possibility to investigate these fundamental questions,
with wide consequences for energy localization and transport in strongly correlated hard, soft,
and biological electronic materials.

We are grateful for stimulating discussions with S Aubry, A Shreve, B Swanson and C R Willis.
Work at Los Alamos is supported by the US DoE, under contract W-7405-ENG-36.
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